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Abstract 
 
It is extremely difficult to simulate the details of coronal heating and also make meaningful 
predictions of the emitted radiation. Thus, testing realistic models with observations is a major 
challenge. Observational signatures of coronal heating depend crucially on radiation, thermal 
conduction, and the exchange of mass and energy with the transition region and chromosphere 
below. Many magnetohydrodynamic simulation studies do not include these effects, opting 
instead to devote computational resources to the magnetic aspects of the problem. We have 
developed a simple method of accounting approximately for the missing effects. It is applied to 
the simulation output post facto and therefore may be a valuable tool for many studies. We have 
used it to predict the emission from a model corona that is driven by vortical boundary motions 
meant to represent photospheric convection. We find that individual magnetic strands experience 
short-term brightenings, both scattered throughout the computational volume and in localized 
clusters. The former may explain the diffuse component of the observed corona, while the latter 
may explain bright coronal loops. Several observed properties of loops are reproduced 
reasonably well:  width, lifetime, and quasi-circular cross-section (aspect ratio not large). Our 
results lend support to the idea that loops are multi-stranded structures heated by “storms” of 
nanoflares.  
 
 
1.  Introduction 
 
The processes that determine the thermal properties of the corona and its radiation spectrum 
involve an enormous range of spatial scales and physical couplings. Treating all these processes 
in a single numerical simulation is extremely challenging, if not currently impossible. The 
heating of the plasma is associated with magnetic reconnection at thin current sheets that are 
generated directly or indirectly by photospheric driving. There are on the order of 100,000 of 
these sheets in a single active region (Klimchuk 2015). Wave heating also requires very small 
spatial scales (Klimchuk 2006; Van Ballegooijen et al. 2011; Antolin et al. 2015). The response 
of the plasma to the heating involves radiation, field-aligned thermal conduction, flows, and a 
fundamental connection to the lower atmosphere. Both mass and energy are exchanged with the 
lower atmosphere, and any meaningful prediction of observations must account for this 
exchange, which requires an accurate treatment of the thin transition region. Neither current 
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sheets nor the transition region is stationary, so numerically resolving them in a realistic setting 
is extremely difficult even with nonuniform grids. 
 
Because of these competing demands, many studies concentrate on limited aspects of the 
problem, foregoing others. For example, one-dimensional (1D) hydrodynamic simulations – 
often called loop models – treat the field-aligned physics and atmospheric coupling very well, 
but they apply to rigid flux tubes and require that coronal heating be specified as a model input. 
Many three-dimensional magnetohydrodynamic (3D MHD) simulations address the coronal 
heating question well, but they essentially ignore the plasma response by neglecting radiation, 
thermal conduction, and atmospheric coupling. Some ambitious MHD simulations include these 
missing effects, but the heating in those simulations comes from relatively passive Ohmic and 
viscous dissipation of broad current and velocity structures, rather than from explosive 
reconnection and associated shocks at a multitude of small current sheets. Whether the former is 
a reasonable proxy for the latter has yet to be established.  
 
We report here on a method of estimating the time-dependent emission from MHD simulations 
that lack radiation, thermal conduction, and a lower atmosphere. The method is applied post 
facto to the simulation output. It is highly simplistic and no substitute for an eventual rigorous 
MHD treatment that includes the full physics, but it is a useful way to compare the simulations 
with observations to gain new insights or evaluate whether an idea is plausible. We refer to the 
method as a cooling model because plasma cooling is the essential missing ingredient in the 
MHD. 
 
The model treats the evolution of the average pressure along a magnetic field line. It is based on 
three approximations. First, plasma heating is represented by increases in pressure in MHD 
simulations that exclude radiation. Second, plasma cooling – including the effects of radiation, 
thermal conduction, and atmospheric coupling – is assumed to produce an exponential decrease 
in pressure. Third, detected emission behaves similarly to pressure for observations made in 
temperature sensitive observing channels such as the 193 and 335 A channels of the Atmospheric 
Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) (Lemen et al. 2012). We 
further explain and justify these approximations below. 
 
We apply the model to our previously published simulation of coronal heating (Knizhnik et al. 
2018). As discussed in that paper, we were able to extract valuable information about the 
statistics of impulsive heating events – nanoflares – but we were unable to say anything about 
their observational consequences. With the cooling model, we are now able to do so. As we 
discuss, our results suggest that the diffuse component of the corona is due to randomly scattered 
and seemingly uncorrelated nanoflares, while individual bright loops are due to clusters of 
events, or nanoflare “storms” (Klimchuk 2009).  
 
2.  Cooling Model 
 
The response to a nanoflare of the plasma contained in a magnetic strand (elemental “loop”) is 
well understood (Cargill 1994; Klimchuk 2006; Reale 2014). Temperature increases rapidly as 
the nanoflare occurs, leading to a greatly enhanced thermal conduction flux down the strand legs. 
This drives an upflow – known as chromospheric evaporation – that fills the strand and increases 
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its density. Evaporation continues after the nanoflare ends, and the plasma cools from the 
conduction losses. These losses diminish as the temperature decreases, but radiation increases 
and eventually takes over as the dominant cooling mechanism. The strand then enters a phase 
where temperature and density decrease together as plasma drains and collects back onto the 
lower atmosphere.  
 
Because thermal conduction and flows are so efficient at transferring energy and mass along the 
magnetic field, and because most strands are short compared to the gravitational scale height 
(105 km for T = 2 MK), pressure, temperature, and density all tend to be quite uniform along the 
strand. Only in the thin transition region at the base do temperature and density have large 
gradients. Pressure remains essentially constant through the transition region because the 
pressure scale height at the local temperature is everywhere much larger than the short 
temperature and density scale lengths. These well-known properties are the justification for the 
field-aligned hydrodynamics code Enthalpy-Based Thermal Evolution of Loops (EBTEL) 
(Klimchuk et al. 2008; Cargill et al. 2012). EBTEL computes the evolution of the spatially 
averaged coronal temperature, density, and pressure along a strand for a given time-dependent 
spatially averaged heating rate. Although the solutions are approximate, they agree well with 
exact solutions from 1D hydro codes that take several orders of magnitude more time to 
compute. Our cooling model, like EBTEL, treats the evolution of the average pressure in the 
strand.  
 
The solid curve in Figure 1 shows the pressure from a 60,000 s EBTEL simulation in which a 
strand of 3x109 cm halflength is heated randomly by nanoflares of different energy. Each event 
has a triangular heating profile (symmetric rise and fall) with a total duration of 500 s. The 
energies were selected randomly from a power law energy distribution of slope -2.4 (Lopez 
Fuentes & Klimchuk 2016), and the delay between successive events is proportional to the 
energy of the first event. This corresponds to a scenario in which footpoint driving tangles and 
twists the magnetic strands until a critical misalignment angle is reached. The temporally 
averaged energy flux is 1.1x107 erg cm-2 s-1 and the median delay between successive events is 
1180 s, both consistent with values inferred from active region observations (Klimchuk 2015, 
Klimchuk and Hinode Review Team 2019; Barnes, Bradshaw, & Viall 2021). As can be seen in 
Figure 1, there are times when nanoflares occur at high frequency, maintaining an approximately 
steady pressure, and times when nanoflares occur at low frequency, allowing substantial cooling 
between events.    
 
Strands lose energy only by radiation. Thermal conduction, evaporation, and draining merely 
serve to transfer energy between the corona and lower atmosphere. Because the flows are 
subsonic – except perhaps during the earliest stages of especially energetic nanoflares – most of 
the plasma energy is thermal. Pressure, which is proportional to the thermal energy density, 
therefore increases as the nanoflare heating is occurring and decreases thereafter. Our cooling 
model assumes that it decreases exponentially in the absence of heating:  
P(t) = P0 exp(-t/τ), where the timescale τ is allowed to depend on pressure:  τ ∝ Pα.  We do not 
have a rigorous explanation for this exponential form, given the complex evolution of described 
earlier, but we show below that it describes the pressure evolution remarkably well. 
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Figure 1: Evolution of the strand-averaged coronal pressure for a strand that is heated randomly by nanoflares:   solid – from the 
EBTEL output; dashed – from the cooling model based on the nanoflare heating input to EBTEL. 

 
The complete model, including both heating and cooling, updates the strand-averaged pressure in 
time step ∆t according to: 
 
                                    𝑃𝑃𝑐𝑐(𝑡𝑡 + ∆𝑡𝑡) = 𝑃𝑃𝑐𝑐(𝑡𝑡) 𝑒𝑒𝑒𝑒𝑒𝑒 �− ∆𝑡𝑡

τ0
� 𝑃𝑃0
𝑃𝑃𝑐𝑐(𝑡𝑡)

�
α
�  +  2

3
 𝑄𝑄(𝑡𝑡)∆𝑡𝑡  .                                (1) 

 
The subscript “c” indicates that this is the pressure of our cooling model, which we later 
distinguish from the pressure of the MHD simulation. The last term is the pressure increase 
associated with the energy input from heating, where Q is the volumetric heating rate averaged 
along the strand (erg cm-3 s-1), and the ratio of specific heats is 5/3.  
 
We have tried different values for the parameters of the cooling model and find that τ0 = 1500 s 
and α = 0 (P0 is irrelevant for this α) give excellent agreement with the EBTEL simulation. The 
solid curve in Figure 1 shows the pressure from the EBTEL simulation, and the dashed curve 
shows the pressure predicted by Equation 1 using the same heating profile Q(t) used with 
EBTEL. The two curves track very well.  
 
We have not performed an exhaustive quantitative search for the best fit values of the 
parameters. Our goal is not to achieve a highly accurate model, but to account for the missing 
physics in MHD simulations to a degree that allows for a qualitatively prediction of the emission 
that would be produced if the missing physics were included. We note that α = 0 (no dependence 
of the timescale on pressure) is similar to the extremely weak dependence derived for an 
impulsively heated loop by Cargill (1993). 
 
It is important to understand that the timescale for pressure decrease, τ0, is different from the 
timescale for temperature decrease, often called the cooling time. Pressure decreases more 
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slowly than temperature when evaporation is occurring, and it decreases more quickly when 
draining is occurring.  
 
The primary purpose of our cooling model is to predict the emission that would be observed by 
instruments such as AIA on SDO. This detected emission depends on the square of density and a 
function of temperature that is different for each observing channel. The channels are designed to 
have temperature response functions that isolate a range of temperatures. This range can be 
narrow or broad depending on the channel.  
 
Although the detected emission depends explicitly on temperature and density, we find that it 
behaves similarly to pressure when the heating is impulsive. There is not a direct connection with 
pressure, but the emission can be modeled in the manner of Equation 1. Specifically, the detected 
emissivity (erg cm-3 s-1) is given by 
 
 

𝜀𝜀(𝑡𝑡) = 𝑐𝑐 𝑃𝑃𝑐𝑐�𝑡𝑡 − 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�  ,                                                       (2) 
 
where the pressure-to-emissivity conversion factor, c, and time delay, tdelay, are different for each 
channel. Pc is from Equation 1, but with parameters that are channel dependent. 
 
The reason for the time delay can be understood as follows. Consider a strand that is cooling 
after having been heated to high temperature by a nanoflare. Pressure peaks when the nanoflare 
ends, but the emission does not brighten until the plasma has cooled into the channel’s range of 
temperature sensitivity. If the maximum nanoflare temperature is already in this range, there is 
still a delay in brightening because time is required for evaporation to increase the emission 
measure to a substantial value (density peaks after both temperature and pressure). The strand 
stays bright for a duration that depends on the width of temperature response function. This is 
captured by τ0, where broader channels have larger τ0.  
 
Plasma also passes rapidly through a channel’s temperature range as it is being heated by the 
nanoflare. However, densities tend to be very small at this time because evaporation has had 
little chance to operate, so the emission tends to be very faint. The cooling phase is much 
brighter and much longer lived. 
 
We find that the emissivity detected in the 335 A channel of AIA can be reproduced with c = 
100, tdelay = 700 s, α = 0, and τ0 = 1500 s (the same α  and τ0 used for pressure). This channel 
has maximum sensitivity near 3 MK and is quite broad (Viall & Klimchuk 2011). The solid 
curve in Figure 2 shows the emissivity as computed rigorously from the temperatures and 
densities of the EBTEL simulation in Figure 1 (coronal emission only; no transition region 
emission), and the dashed curve shows the emissivity predicted by Equations 1 and 2. The 
agreement is very acceptable. Discrepancies exist but are not crucial, as discussed below. 
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Figure 2:  solid – 335 A emissivity from the EBTEL temperature and density;  dashed – predicted emissivity based on the cooling 
model and EBTEL pressure. 

 
Figure 3 shows the EBTEL and predicted emissivity in the 193 A channel. This channel is cooler 
and narrower than the 335 A channel, with maximum sensitivity near 1.5 MK. We therefore use 
a longer delay, tdelay = 1500 s, and shorter duration, τ0 = 700 s. The agreement is further 
improved with α = 0.5 and P0 = 2 dyn cm-2. A larger conversion factor c = 6000 accounts for 
the greater overall sensitivity of the channel. The model performs reasonably well, except for the 
last, most energetic event, where the duration of the brightening is greatly overestimated. We 
believe this can be explained by a catastrophic temperature collapse that sometimes occurs at the 
very end of cooling (Cargill & Bradshaw 2013; Reale & Landi 2012). This generally happens 
below 1 MK, but for especially energetic nanoflares, it can occur in the temperature range of the 
193 A channel. This catastrophic cooling is not captured by our model. Fortunately, we are 
primarily interested in the collective emission from multiple strands, so accurately reproducing 
the detailed light curves of individual strands is not crucial. 
 
An additional deficiency of the model is a tendency to overestimate the weakest emission in the 
193 A channel. Again, this is not a significant problem because coronal observations are 
indicative of collective emission, which is dominated by the times when strands are bright. 
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Figure 3:  solid – 193 A emissivity from the EBTEL temperature and density;  dashed – predicted emissivity based on the cooling 
model and EBTEL pressure. 

 

These EBTEL simulations demonstrate that the cooling model performs well overall in 
predicting the emissivity in the 335 and 193 A channels whenever the heating takes the form of 
nanoflares having a duration of 500 s or less. Additional simulations are required to optimize the 
model parameters for other channels, different forms of heating, or strands of different length. 
 
To apply the cooling model to our MHD simulation, we replace the heating term in Equation 1 
with the change in the field-line-averaged pressure from the simulation, PMHD: 
 

   𝑃𝑃𝑐𝑐(𝑡𝑡 + ∆𝑡𝑡) = 𝑃𝑃𝑐𝑐(𝑡𝑡) 𝑒𝑒𝑒𝑒𝑒𝑒 �− ∆𝑡𝑡
τ0
� 𝑃𝑃0
𝑃𝑃𝑐𝑐(𝑡𝑡)

�
α
�  +  𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡 + ∆𝑡𝑡) −  𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡)  .                   (3) 

 
This is appropriate because there is no radiation in the simulation. Whereas Pc rises and falls 
from heating and cooling, PMHD trends upward from the ongoing, uncompensated heating. We 
sometimes refer to Pc as the cooled pressure and PMHD as the uncooled pressure. 
 
The pressure in an MHD system is, however, affected by things other than direct heating. Unlike 
with EBTEL, which assumes a rigid flux tube, the magnetic field evolves. PMHD can increase or 
decrease from work done on or by the plasma as the strand volume changes. It can also increase 
or decrease because the two new strands that form from reconnection contain a mixture of 
plasma from the two original strands. EBTEL only includes direct heating and radiation. 
Fortunately, these tend to dominate. Compression heating is generally much weaker than direct 
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heating from magnetic energy conversion4, and we show below that the mixing effect is 
relatively small for the heating scenario we investigate here.  
 
 
3.  MHD Model 
 
The MHD simulation was presented originally in Knizhnik et al. (2018). Beginning with a 
uniform “vertical” field in a box, we use the Adaptively Refined Magnetohydrodynamics Solver 
(ARMS; DeVore & Antiochos 2008) to solve the equations for mass, momentum, and energy 
conservation, and the magnetic induction equation: 
 

                                                        ∂𝜌𝜌
∂𝑡𝑡

+ ∇ ⋅ ρ𝒗𝒗 = 0  ,                                                                                   (4)                                                                       
 

∂𝜌𝜌𝒗𝒗
∂𝑡𝑡

+ ∇ ⋅ (𝜌𝜌𝒗𝒗𝒗𝒗) = − ∇𝑃𝑃 +
1

4𝜋𝜋
(∇  ×  𝑩𝑩) ×  𝑩𝑩  ,                                                    (5) 

 
∂𝑈𝑈
∂𝑡𝑡

+ ∇ ⋅ ��𝑈𝑈 + 𝑃𝑃 +
𝐵𝐵2

4π�
𝒗𝒗 −

𝑩𝑩(𝒗𝒗.𝑩𝑩)
4π � = 0  ,                                                     (6) 

 
∂𝑩𝑩
∂𝑡𝑡

= ∇ × (𝒗𝒗 × 𝑩𝑩)  ,                                                                                (7) 

 
where  

𝑈𝑈 = 𝜖𝜖 + 𝐾𝐾 + 𝑊𝑊                                                                              (8) 
 

is the total energy density – the sum of internal energy density 
 

ϵ =
𝑃𝑃

γ − 1
  ,                                                                                            (9) 

kinetic energy density 

𝐾𝐾 =
𝜌𝜌𝑣𝑣2

2
  ,                                                                                             (10) 

and magnetic energy density 

𝑊𝑊 =
𝐵𝐵2

8π
  .                                                                                             (11) 

 

 
4 Consider the release of magnetic energy in volume corresponding to a flux tube. Magnetic 
pressure decreases, and if the released energy is lost to radiation, the volume constricts to 
maintain pressure balance with the surroundings. (In our simulation, the magnetic energy is 
converted largely to thermal energy, with some kinetic, and there is minimal volume change.) 
The change in magnetic energy per unit length is δEm = (B2/8π)δA, where δA is the decrease in 
cross sectional area. The work per unit length done by adiabatic compression of a similar volume 
of plasma is P δA. The ratio of the two is β = 8πP/B2, which is very small in the corona. 
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In these equations, ρ is mass density, T is temperature, P is pressure, γ is the ratio of specific 
heats, v is velocity, B is magnetic field, and t is time. There is no explicit resistivity or viscosity 
in the simulation, but ARMS has a minimal, though finite, numerical resistivity. This allows 
reconnection while conserving magnetic helicity extremely well, which is a key ingredient in 
accurately modeling high magnetic Reynolds number environments such as the solar corona 
(Knizhnik et al., 2015, 2017a, 2017b). Our chosen form for the energy equation rigorously 
conserves total energy. None disappears from numerical effects. Whatever energy is lost by the 
magnetic field is gained by the plasma. 
 
The initial atmosphere, like the magnetic field, is uniform. There is no radiation or thermal 
conduction, nor is there a transition region or chromosphere. There is a photosphere only to the 
extent that the field is line tied at the top and bottom boundaries and cannot slip. 
 
We drive the system with small-scale rotational motions at the top and bottom boundaries, which 
correspond to opposite polarity regions of the photosphere. The driving pattern consists of 199 
closely packed vortex cells within a large hexagonal region. The rotation is equal and opposite at 
the two boundaries. The sense of rotation varies randomly from cell to cell, with a 3:1 preference 
for one direction over the other; thus, there is a net injection of helicity. The rotation rate ramps 
up and down such that one full turn of twist is imparted to the field over each cycle. The cycle 
then repeats, maintaining the same sense, for a total of 15 cycles. The relative phasing of the 
cells is random. The model and driving properties are discussed more fully in Knizhnik et al. 
(2018). Observations of small-scale rotational motions are discussed in Bonet et al. (2008), 
Wedemeyer-Bohm & Rouppe van der Voort (2009), and Wedemeyer-Bohm et al. (2012). 
 
The equations are solved in dimensionless units on a 640x640x128 uniform numerical grid. We 
convert to physical units by specifying that the vertical height of the box (initial length of the 
magnetic strands) is 2x104 km, the initial magnetic field strength is 50 G, the plasma β is 0.2, and 
the peak driver velocity is 1 km s-1, which is 5% of the Alfven speed. These values imply an 
initial plasma pressure of 20 dyn cm-2. This is about an order of magnitude larger than in the 
actual corona, but our cooling model quickly lowers this to realistic values. The vortices in the 
driver flow have a resulting diameter of 5000 km that is spanned by 32 grid cells. They are not 
meant to represent particular solar surface features, but are a convenient way of injecting energy 
into the field via small scale incompressible flow. We will explore other forms of driving in a 
future study. We note that the spatial resolution may not be adequate to properly treat the onset 
of reconnection in the current sheets that develop (Leake, Daldorff, & Klimchuk, 2020). How 
this impacts the results is an important question that applies to all MHD simulations of the 
corona and is one that we are actively pursuing. The total duration of the simulation is 2.03x105 
s, or more than 2 days.  
 
As the boundary flows are applied, the initially uniform field becomes progressively more 
stressed. Instabilities develop and reconnection occurs. A statistical steady state is established in 
which the Poynting flux of energy pumped into the field by the driving is balanced by the energy 
removed from the field by the reconnection. This energy remains in the system, mostly in the 
form of thermal energy, but with a small amount of kinetic energy. As discussed in Knizhnik et 
al. (2018), a complex and ever-changing web of current sheets is created. See Figure 4 of that 
paper. Although the pattern of driving remains simple and organized, the field line connectivity 
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between the photospheric boundaries is not. The connections are far more complex than a 
collection of coherent twisted flux tubes, as would be the case if there were no reconnection.  
 
The cooling model is applied to the average pressure along the field lines. We trace field lines 
upward and downward from a 400x400 grid on the midplane. This is nontrivial computationally, 
so we do so at intervals of 445 s, much longer than the MHD simulation time step, and shorter 
than the timescale in the cooling model, τ0. The time step of the cooling model, ∆t, is also 445 s. 
The variation in pressure along individual field lines in the MHD simulation is typically of order 
0.1 dyn cm-2, though this is not important since the cooling model treats field line averages. The 
equilibration time for smoothing out pressure variations is the sound travel time and is 
comparable to ∆t midway into the simulation. 
 
Figure 4 shows the evolution of the cooled pressure for a representative field line midway into 
the simulation. The interval covers 15,000 s. Figure 5 shows a 15,000 s interval from the EBTEL 
simulation (subset of the dashed curve in Fig. 1). The two curves have similar characteristics, 
such as the variety of peak amplitudes and separations, suggesting that the heating in the MHD 
simulation is not unlike that assumed for the EBTEL simulation, i.e., impulsive bursts that follow 
a power law energy distribution. This is not surprising. We showed in our original paper on this 
simulation that various proxies of heating have spatial and temporal distributions that obey 
power laws (Knizhnik et al. 2018; see also Knizhnik & Reep 2020 and Knizhnik et al. 2020). 
 

 

Figure 4 :  Pressure evolution over a 15,000 s interval at a representative grid point in the mid-plane of the combined 
MHD/Cooling simulation.   
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Figure 5:  Pressure evolution over a 15,000 s interval in the EBTEL simulation (zoom of the dashed curve in Fig. 1) 

 
 
4.  Coronal Emission 
 
Our objective is to study the basic properties of the coronal emission expected from a simulation 
of this type. We wish to know whether impulsive heating of the kind that occurs in the 
simulation is supported or ruled out by observations. Although the predicted emission is only 
approximate, it should provide guidance as to the feasibility of the basic physical scenario. We 
choose to emphasize the 193 A channel because there is an abundance of observations in its 
temperature range. 
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Figure 6:  Map of emissivity as would be detected in the 193 A channel of AIA in the midplane of the simulation at t = 46,797 s. 
The intensity scale is logarithmic with arbitrary units. Spatial units are Mm for our chosen conversion from code units, but see 
the discussion in the text. An animated version is available covering the full simulation (2.03x105 s). 

 
Our model can be used to construct the emissivity throughout the 3D volume, as in the 
GX_Simulator approach (Nita et al. 2018), but we here choose to concentrate on the emissivity 
in the midplane. Figure 6 is a map of the 193 A midplane emissivity at t = 46,797 s, well after 
the statistical steady state has been achieved. If our initial field were a magnetic arcade, rather 
than straight, the midplane would correspond to a vertical cut through the apices of the curved 
field lines, as shown schematically in Figure 7. The dimensions are 100,000 km x 100,000 km, 
but this depends on how we choose to convert from code units to physical units, as discussed 
below. 
 
Figure 8 shows the same map superposed with the projected locations of the vortex cells of the 
“photospheric” driving. There is no driving at the perimeter and therefore no heating and no 
emission there. We stress that ubiquitous reconnection events result in a complex magnetic 
connectivity between the boundary and midplane. The system is not characterized by simple 
disconnected twisted flux tubes arranged side by side. This is evident in the intricate and 
continually evolving web of current sheets that is produced by the combination of reconnection 
and driving (Fig. 4 in Knizhnik et al. 2018). It is also apparent in Figure 9, which shows field 
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lines passing through a regular 5x5 grid of positions in the mid-plane. This is the same time and 
emissivity map as Figures 6 and 8. The vy (left-right) component of the boundary flows is shown 
at the bottom. Note how the field lines are intertwined and map between noncomplementary 
vortex cells at the top and bottom. Some field lines have widely separated (x,y) positions at the 
top and bottom. 
 
Figure 6 is also a movie covering the full duration of the simulation. It reveals two basic 
components to the emission. First, there are many small seemingly uncorrelated brightenings that 
give the appearance of twinkling throughout the plane. The individual features have a variety of 
shapes but are often elongated. Their long dimension is generally, but not always, smaller than 
the driver cell diameter. Second, there are distinct clusters of brightenings that persist for longer 
than the individual features that comprise them. The clusters have irregular shapes, but with an 
envelope that is roughly circular in the sense that the aspect ratio is not large.  Each cluster 
encompasses several driver cells. They, like the individual brightenings – both within and 
 
 

 
 

Figure 7:  Schematic showing how the midplane of the simulation would correspond to a vertical cut if the initial field were an 
arcade rather than straight. 
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Figure 8:  Map of 193 A emissivity from Fig. 6 overlaid with the projected locations of the vortex driver cells at the 
“photospheric” boundaries. The cluster of brightenings near position (-17, 22) is shown close up in Fig. 9. 

 
 

 
outside of the clusters – have no obvious spatial relationship with the cells. The brightenings do 
not occur preferentially at cell boundaries or cell centers. 
 
We stress that the emissivity map is not the same as a coronal image. An image represents a line-
of-sight integration of the emissivity through the volume. For example, integrating along a 
vertical line or horizontal line in the map would give the brightness of a single pixel in an image 
that corresponds to an observation from above and from the side, respectively, in Figure 7.  
 
Like the emissivity map, coronal images of active regions also have two components:  a diffuse 
component and distinct bright loops. We have suggested previously that the diffuse component is 
due to random nanoflares, while loops are bundles of spatially unresolved strands that are heated 
by “storms” of nanoflares (Klimchuk, 2009, 2015). This explanation of loops reconciles several 
observations that are otherwise difficult to understand. Our combined MHD/cooling simulation 
is entirely consistent with this observation-based picture. We now explore the agreement in more 
detail.  
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Figure 9:  Magnetic field lines (green), 193 A emissivity in the midplane, and Vy component of driver flow at the lower boundary 
at t = 46,797 s. 

 
 
Figure 10 show a closeup of the cluster near position (-17, 22) in Figure 8, which we equate with 
a single coronal loop in an image. As already noted, it encompasses several driver cells and has 
no obvious spatial relationship with the cells. The emission is both highly structured and highly 
variable, and it is contained within an envelope that is the loop’s cross section. The spatial and 
temporal details are smoothed out by the line-of-sight integration and finite pixel size of a real 
observation. 
 
Figure 11 shows profiles of intensity versus position for a cut across the loop axis in a 
hypothetical observation. The black curve corresponds to a view from above and is obtained by 
integrating along y at x positions in the range -30 < x < 0. The red curve corresponds to a view 
from the side and is obtained by integrating along x at y positions in the range 10 < y < 40. The 
integrations are performed over the full dimension of the simulation, not just the close-up region 
in Figure 10. Thus, the bright feature near position (20, 30) in Figure 8 contributes to the 
enhanced emission on the right side of the red intensity profile.  
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These intensity profiles are not unlike those of actual observed loops (Klimchuk & DeForest 
2020; Williams et al. 2020). For example, loop emission is generally fainter than background 
emission in real data. The full width at half maximum (FWHM) of the intensity profiles in 
Figure 11 is about 7000 km as determined by eye. In comparison, actual loops observed at 
comparable temperatures have FWHM averaging around 1000 km (Klimchuk 2015). We note 
that this particular cluster is wider than most clusters in the movie. Also, its size depends on the 
conversion from dimensionless code units to physical units, which is somewhat arbitrary. 
 
Figure 12 shows light curves for the three locations marked by red, blue, and green X’s in Figure 
10. There is tremendous variability at all three locations due to the impulsive nature of the 
heating. Figure 13 shows the light curve for the integrated emission over the white box in Figure 
10. The impulsiveness at the individual locations is washed out, and the spatially integrated light 
curve exhibits a relatively smooth rise and fall. This is precisely the case for real loops. The  
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Figure 10:  Close up of Fig. 8 showing a cluster of brightenings. X’s indicate the locations of the light curves in Fig. 11. The white 
box marks the area of the spatially integrated light curve in Fig. 12. 

 

 

  

Figure 11:  Intensity profiles (emission integrated along the line of sight versus position) corresponding to an observation 
made from the top or bottom (black) and from the left or right (red). The spatial coordinates are offset from those in the 
other figures.  
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Figure 12:  193 A light curves (emissivity versus time) at the three locations indicated by the X’s in Fig. 9, with corresponding 
colors. The dashed vertical lines roughly demarcate the lifetime of the complete cluster of brightenings.  

 
 
 

 

Figure 13:  193 A light curve for the emissivity integrated over the white box in Fig. 9. The dashed vertical lines roughly 
demarcate the lifetime of the complete cluster of brightenings.  
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duration as given by the FWHM is about 10,000 s. In comparison, the observed FWHM of 193 A 
loops is typically a few thousand seconds, but ranging between 600 and 18,000 s (Winebarger et 
al. 2003; Ugarte-Urra et al. 2006). Again, the simulation values depend on the assumed 
conversion to physical units. The spatial and temporal conversions are linked, and if we decrease  
the spatial conversion by, say, a factor of 5, we must decrease the temporal conversion by the 
same factor. Doing so would bring both the width and lifetime of the simulation loop into 
agreement with observed values. 
 
Changing the conversion is not without implications. The ratio of the vertical dimension of the 
simulation box (initial strand length) to the diameter of the driver vortex cells is 4:1. If the cells 
represent small scale motions associated with photospheric convection, then this ratio is much 
too small. Reducing the cell diameter by a factor of 5 to 1000 km – so as to better match 
observed loop widths and lifetimes – results in a very unrealistic loop length of 4000 km. 
Whether the basic behavior of the heating would be significantly different with more realistic 
lengths (larger aspect ratios) must be investigated. One potentially important factor is the Alfven 
travel time along the strand. It is about an order of magnitude larger in our simulation than in real 
active regions. Another factor is the effect of line tying on the tearing instability that initiates 
reconnection. The impact of line tying is reduced in longer strands. Note that our choice of a 
small length to diameter aspect ratio represents a tradeoff between spatial resolution and 
computational cost. 
 
It is significant that the loop cross section in the emissivity map – the envelope of the cluster – is 
roughly circular. Recent observational studies find that this is the case for most real loops 
(Klimchuk & DeForest 2020; Williams et al. 2021; McCarthy et al. 2021). Although this has 
generally been assumed, there has until now been no physical justification. We have argued that 
the circular shape in our simulation is not an artifact of the driving, but confirmation with 
different forms of driving is needed. We agree with Hood et al. (2016) and Reid et al. (2018) that 
nanoflare storms probably have an avalanche nature, where one event triggers subsequent events. 
If the process begins at one location and spreads equally in all transverse directions, then a 
circular shape is expected.  
 
We note the recent interesting study by Malanushenko et al. (2022). They analyzed an MHD 
simulation of an entire active region and found that many loops in the synthetic images based on 
the simulation come not from thin tube-like structures, but from large warped veil-like emissivity 
structures in the 3D volume. Loops are visible in places where the veils are viewed edge on and 
not where they are viewed face on. We can examine our simulation in that context.  
 
Our idea at the start of this study was to investigate a corona that is driven by small-scale 
photospheric flows. Our initial normalization based on a strand length of 20,000 km implies 
driver vortices of 5000 km diameter; however, observations and simulations suggest that a size 
closer to 1000 km is more appropriate (Bonet et al. 2008; Wedemeyer-Bohm & Rouppe van der 
Voort 2009; Wedemeyer-Bohm et al. 2012). As noted above, such a normalization brings the 
diameters and lifetimes of the clusters of brightenings into good agreement with the observed 
widths and lifetimes of coronal loops. The brightenings themselves have a smaller scale (< 1000 
km). They correspond to ribbons in 3D. In comparison, the veils in Malanushenko et al. (2022) 
tend to be much larger – of order 10,000 km. If we were to normalize our simulation to match 
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this scale, the driver vortices would have a diameter greater than 10,000 km. This may suggest 
that the flows responsible for the veils in Malanushenko et al. have a scale of this size. We are 
presently involved in a study to identify the physical origin of the veils.  
 
The above discussion specifically concerns emission in the 193 A channel, but emission 
observed in the hotter and broader 335 A channel is qualitatively similar. Figure 14 has a 
snapshot at the same time as the 193 A snapshot and a movie of the full simulation. As with 193 
A, there are both random brightenings and clusters of brightenings. The most significant 
difference is a higher level of quasi-steady, quasi-uniform emission. This is to be expected based 
on a comparison of the light curves Figures 2 and 3. There are extended periods when relatively 
high frequency heating maintains the plasma in the temperature range of the 335 A channel and 
above the range of the 193 A channel. This is consistent with coronal observations. Distinct 
loops stand out less prominently above the background in 335 A images than in 193 A images. 
 

 

Figure 14:  Map of emissivity as would be detected in the 335 A channel of AIA in the midplane of the simulation at t = 46,797 s. 
The intensity scale is logarithmic with arbitrary units. An animated version is available covering the full simulation (2.03x105 s). 

 

 
5.  Plasma Mixing 
 
We return to the question of plasma mixing that occurs when two strands reconnect and 
exchange sections. This impacts the change in PMHD used to infer coronal heating on the right 
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side of Equation 3. As emphasized in Klimchuk (2015), if the reconnecting strands have different 
pressures, each new strand will have an average pressure that is intermediate between the two 
original pressures. The strands equilibrate over the cooling model timestep, as noted above. It is 
easy to see that the maximum change in pressure from mixing is one-half of the original pressure 
difference and occurs when the strands reconnect exactly at their midpoints. The pressure change 
is less if they reconnect closer to the photospheric boundaries. Reconnection very close to the 
boundaries produces minimal mixing and little pressure change. The average pressure change 
expected with random reconnection locations is one-quarter of the original pressure difference 
between the strands.5 
 
We estimate the expected magnitude of the mixing effect using our EBTEL simulation discussed 
in Section 2. If a collection of many similar strands is heated randomly by nanoflares, then the 
pressures of any two adjacent strands at a given time can be represented by any two random 
times during the simulation of a single strand. Comparing multiple pairs of random times in our 
simulation, we find that the magnitude of the pressure difference averages 2.12 dyn cm-2. 
Assuming that the strands reconnect at random locations along their length, we divide by four to 
estimate a typical pressure change from mixing of 0.53 dyn cm-2. This compares to a mean 
pressure increase from direct heating in the simulation of 0.84 dyn cm-2. The effect of mixing is 
not small overall, but it is negligible compared to larger heating events that produce the brighter 
emission. As seen in Figure 1, those events have pressure jumps of several dyn cm-2. 
 
Unfortunately, the effect of mixing may be exaggerated in the MHD simulation. Radiation is not 
included, and the uncooled pressures steadily increase over the course of the simulation. This 
leaves open the possibility that pressure variations across the system may become artificially 
large. This would cause the mixing during reconnection events to also be artificially large. 
 
We estimate the effect of mixing in the simulation by comparing PMHD at adjacent locations in 
the mid-plane at a time halfway into the simulation. The solid curve in Figure 15 shows the 
cumulative probability distribution function for the magnitude of the differences. They have been 
reduced by a factor of four to give the average mixing under the assumption of random 
reconnection locations. 75% of the values are less than 0.5 dyn cm-2. The dashed curve shows 
cumulative probabilities for the cooled pressures. Evidently, reconnection and mixing are rather 
efficient at preventing large pressure variations from developing, even without cooling. Since the 
pressure increases that occur during the simulation (Fig. 4) are much larger than the expected 
changes from mixing, we conclude that direct heating dominates, especially in the larger events 
that contribute the most emission. We also note that the general behavior of the emission does 
not change over the course of the simulation, as would be expected if mixing began to dominate 
at later times as PMHD increases.  

 
5 Consider two strands of different pressure and equal length (a good approximation for our 
simulation, as discussed in Section 5 of Knizhnik et al. 2019 and also evident in Figure 9). 
Suppose they reconnect a fractional distance f of the strand length from the mid-plane. The 

average pressure in one new strand increases, while that in the other new strand decreases by the 
same amount. The unsigned change in pressure is ∆P = (1/2 - f) |P2 -P1|. If reconnection occurs 

at random locations (random f in the range [0, 1/2]), the average unsigned pressure change is 
<∆P> = 1/4 |P2 -P1|. 



22 
 

 

 

Figure 15:  Cumulative probability distribution function of the pressure difference magnitudes between adjacent grid points in 
the mid-plane of the MHD simulation, with and without cooling (dashed and solid curves, respectively). Differences have been 
reduced by a factor of four to approximate the effect of mixing. 

 
There is one further effect to consider. When we compute the pressure change in a strand to use 
in the cooling model, Equation 3, we assume that the strand maintains a fixed position in the 
mid-plane over the 445 s time step, ∆t. If the strand drifts during this time, there will be an 
artificial change in pressure. We have verified that this effect is very small. Typical horizontal 
velocities in the mid-plane imply displacements of only a few hundredths of a grid cell 
dimension over the time step. 
 
 
6.  Summary and Future Plans 
 
We have presented a simple method for approximating the coronal emission that could be 
expected from an MHD simulation that does not include radiation, thermal conduction, or 
coupling to the lower solar atmosphere. These effects must be accounted for in any meaningful 
comparison with observations. The method – called the cooling model – is applied to the 
simulation output post facto and thus can be used with any MHD simulation. It could also be 
incorporated directly into an MHD simulation and operate in real time, but it would not 
constitute a coupled model since it does not feedback on the MHD. The method operates on the 
average pressures along field lines. We have applied it to our own previously published 
simulations of coronal heating that results when an initially straight magnetic field is driven by 
many small vortex flows at the “photospheric” boundaries. The heating is fundamentally 
impulsive, taking the form of nanoflares. The results suggest that scattered and uncorrelated 
nanoflares give rise to the diffuse component of coronal images, while coronal loops are 
produced by nanoflare storms. Several observed properties of loops are qualitatively reproduced: 
width, lifetime, and approximately circular shape of the cross-section.   
 
This is not the final word, but it indicates that the simulation has significant merit and gives us 
encouragement to proceed in this direction. We plan several improvements. We will replace the 
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vortex driver flows with more random forms of driving. This is especially important for 
verifying or refuting our claim that the quasi-circular nature of the bright clusters (loop cross 
sections) is not an artifact of the driving. We will consider expanding field geometries rather than 
the straight uniform field studied so far. This could reveal a nonuniform height distribution of 
nanoflares, which would have implications for the occurrence of thermal nonequilibrium (e.g., 
Klimchuk 2019). We will consider longer strands relative the characteristic size of the driver 
flows to see how the behavior is affected. We will analyze more quantitatively the properties of 
the nanoflare brightenings, using the same techniques we employed in Knizhnik et al. (2018) to 
study proxies of heating. We will investigate the causes of the collective behavior that gives rise 
to nanoflare storms. 
 
Finally, we will replace the simple exponential cooling model with a full EBTEL treatment. 
EBTEL provides the time dependent coronal temperature and density, allowing a rigorous 
determination of emissivity. The time dependent heating will still come from the change in 
pressure in the MHD simulation. Another advantage of EBTEL is that it provides the differential 
emission measure distribution of the transition region. We can use this to compute the brightness 
of the transition region in different observing channels. It can rival or exceed the coronal 
brightness (Schonfeld & Klimchuk 2021; Nita et al. 2018).  
 
This work was supported by the GSFC Internal Scientist Funding Model (competitive work 
package) program. We thank the referee for comments and suggestions. 
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